Premiere Global Services

[image: image1.png]@ Premiere

Global Services

Cosnuntcation TecHNOLOGIES
aar Staeprrey Business Process

How to Setup a Receiver or Web service
Document created by

Bruce Rechichar

8/8/2008

Last Modified

10/13/2008

2WEB “Receiver” / Web Service

2General Setup

2.NET Setup

2WSDL

3C# Receiver

5Internet Information Services (IIS) Setup

7JAVA Setup

7WSDL

8WSDL2JAVA

8JAVA Sample

9Appendix A

9WSDL

9C# Receiver (PGIAsync .NET Project)

9JAVA Receiver

9Documents

9Sample Pushed XML

WEB “Receiver” / Web Service
Clients will need to setup web service that will “receive” the data from the GFPD push. The data structure for the XML that is pushed to the web service is described in document gfpd_formdata.pdf and can be found in Appendix A.
WSDL files will also be provided from Premiere Global Services to help clients build their services. The WSDL file (XOAResults.wsdl) can be found in Appendix A.
General Setup

A web service needs to be created and hosted at a public IP Address. The GFPD process will push data to the web service (IP Address) and the web service will need to process the data.
.NET Setup

Web Services in .NET consist of a ASMX (Active Server Methods) file along with a DLL (which contains the processing code for the ASMX file). ASMX and DLL files will need to be hosted on a public IIS web server using a public IP Address. The GFPD process (or the PGiConnect Servers will need access to this IP Address for the PUSH)
WSDL

Premiere Global Services will provide a WSDL for the web service receiver. This WSDL provides the scheme for the GFPD Push. XOAResults.WSDL can be found in Appendix A. Using the WSDL.EXE tool provided by Visual Studio .NET the proper interfaces can be created. The steps to create a web service receiver are documented in the C# Receiver section.
C# Receiver

Building a C# Receiver can be accomplished using the following steps:

1) Obtain the XOAResults.wsdl (see Appendix A)

2) Use WSDL.EXE from “Visual Studio Command Prompt” using the /si switch. This will create a .cs file that can be imported into a C# project.
[image: image2.png][C:\Docunents and Settings\brechichar\My Documents\Uisual Studio 2085\Projects\PG
IAsync\PGIAsync >din

Uolune in drive C is 0SDisk

Uolune Serial Number is GASF-759F

Directory of C:\Docunents and Settings\brechichar\My Docunents\Uisual Studio 20|
[05\Pro jocts\PGIAsync\PGIAS ync.

0808 2008 <DIR>
087082088 <DIR>
08708 2088 <DIR> hin
07/24/2088 1 ClassDiagrant .cd
07,24/2088 <DIR> b
07,24/2088 3.411 PGIAsync.csproj
07,24/2088 11312 PGIAsync csproj.user
08708 2088 11888 PGIAsync Publish.xnl
06152088 Propertics
06/ 152088 87 Servicel.asmx
05,08 2088 23,168 Servicel asmx.cs
17661 Weh.config
2537878 KOAresults .usdl
432,782 KOAResultsinterfaces.cs
717,308 hytes
5 Dir(s> 30,429,564,928 hytes free

ents\Uisual Studio 2805\Projects\Pq|
ROAresults

age Utility
[Microsoft CR> NET Framework, Uersion 2.0.50927.421
[Copyright (C> Microsoft Corporation. A1l rights reserved.

in52ing 1o C:\Docunencs an Bogunentowvisual Studio 20}
05 Fro Jec £a\PGIAs ync\PGT s ync ROfiezuTes Incort aces -cb] e

[C:\Docunents and Settings\brechichar\My Documents\Uisual Studio 2885\Projects\Pd]
TAs ync\PGIAsync>

3) Open a new .NET project and create a new ASP.NET Web Service Application
4) Add the XOAResultsInterfaces.cs file to the project (Open the file and make NOTE of the Interface name)
[image: image3.png]=] EEal o
:34\,;‘“5“,(74 Find inteface name inside of imported file

- () Properties LY O LM AL+ B LB L LAY LU AL L L ULE AL L LS LY pEL
- [References [System.Xul.Serialization.Xullncludeiccribuce (typec
B ibin

Brpublic interface [ZOkResultBinding {
& £ obi 4

2 Cspigran

- PGlAsyne.Publish.xml
; System.eb. Services. Uebliechodicoribuce
& 8 Servicet asme tav: 0

) Servicetimcics [System. Vieb. Services. Protacals. Sospbocimentlietk
B Web config void hddressBlockAdd([System.Xnl.Serialization.
8] XOAvesults.wsdl
&) HOAResulsInterfaces.cs

%

Import and Open

117 <rewaris/>

5) Implement the interfaces by opening the <service>.asmx.cs file and adding the interface name to the class. After adding the interface name to the class right click on the interface name and implement the interface.
[image: image4.png]B
/// Swwary description for Servicel

117 </ sumary>

[VebService (Nanespace = "http://tempuri.ora/")]
[VebServiceBinding (ConformsTo
[ToolboxTten{talse)]

public class Servicel : System.Ueb.Services.isbService, [XOkResultBinding

¢
7"
7/ Mewper Varisbles
7"

public Soapinknowneader[] unknownHeaders:

WeiProfiles.BasicProfilel 1)1

| PGlAsync.
&) Servicel
23 servc

(13 vieb.con

] XOhresul:

] xoaresul

View Designer

Implement Interface Explctly

[

Implement Interface »

Refactor

Insert Snippet,

6) After the interface has been implements just implement the code for the functions of interest (FormData is used with GFPD for DTMF and SMS results, the other functions can be used to implement Async operations)

NOTE: a full code sample that builds a web listener can be found in Appendix A. This code creates a Service1.asmx page along with a PGIAsync.DLL that needs to be hosted on an IIS Web Server.
Internet Information Services (IIS) Setup

The asmx page and the PGIAsync.DLL must be hosted on an IIS Server. To configure open the Internet Information Services (IIS) Manager and create a Virtual Directory.

[image: image5.png]1 FEle Action View Window Help

c- A@EXERAB(RIE2]) mn
€ Internet Information Services 2| [Name [Path
3 PC-DANIAZ (ocal computer) @ _vtibin Ci\Program Fles\Common F
) Application Pools @Rpc CAWINDOWS\System32\R,
Web Sites [@RpewithCert CHWINDOWS\System3Z\R.
: QE_“- 1 J aspret_clentt
Explore images
= Q Qpen [ysMSForm
4 permpsions _private
Browse -vt_enf
_vtilog
SEe ,vz i put :
o D Zvti_scry
= tinely
fatne Jisstarttm

Web Ste.

Al Tasks > web St (fom fle).

iew 4

Virtual Directory (fom fie).

© NewWindow from Here
Server Extensions 2002 Web
e Server Exterisions 2002 Admiristrator
Rename L
Refresh
Create neW W ot

ENGLIo
Properties

Next, create a bin folder in the virtual directory then copy the Service1.asmx page to the root virtual directory and copy the DLL to the bin directory.

[image: image6.png]nternet Information Services (115) Manager

(4 Hle Action View Window Hep

e~ |amE

B(R2]r=u

€3 Internet Information Services
£ PC-DANIAZ Jocal compter)
3 appication Pools
523 Web Sites
=4 Defauit Web Site

@ _vii_bin
@ Rpc
@ RpcwithCert
aspret_clent
images
=4 SMSForm

J bin
O private
540 _vi_enf

& phpscript

TR

P

Name Path
bin DLL's goin bi
|ServiceL.asmx folder

| SMSForm.asmx

| web.corig \

asmx pages go in
root directory

The ASP.NET version for the virtual service needs to be 2.0.50727 or higher. To check this right click on the SMSForm in the IIS Manager. Select Properties and then click on the ASP.NET Tab.

[image: image7.png]e Action View

ternet Information
|PC-DANIAZ (ocal
3 appication Poc
£ Web Sites
=8 Default wet
=@ _vibin
@ Rpc

5 Rpcwitt
- aspriet_¢

J images
=< SMSForr

2 bin
2 _private
B4 _vti_onf
5 phpsc
O _vtilog
2 _vtipvt
883 _vi_sar
£ _vixt
@@ Microsoft St

i el
[Bo] 1sForm Properties

Drectory | Documents | Drectory Secrity | HTTP Headers | Custom Erors. ASPAET |

ASPnet

ASP.NET version:
Virtual path:
File Iocation:
File creation dats:

File last modified

posoer 2

/SMSForm
CiAnetpubwwwroohEMSFor miyweb, confi
7/26/2008 6:08:10 P

7/29/2008 10:34:47 AM

Edit Configuration

Cancel | Ay

Once the service is setup in IIS Manger to update the service new DLL’s and ASMX files just need to be put in place.

JAVA Setup

To setup a receiver in JAVA tools like AXIS2 can be used to create JAVA classes which can then be used to setup a Web Receiver.

WSDL

Premiere Global Services will provide a WSDL for the web service receiver. This WSDL provides the scheme for the GFPD Push. XOAResults.WSDL can be found in Appendix A.
WSDL2JAVA

Axis2 tool used to generate JAVA classes and create the implementation skeleton.
JAVA Sample

A JAVA sample can be found in the JAVA.ZIP (see Appendix A) file. This package contains a server and client code which show how to build the receiver and test the receiver.
Appendix A

WSDL
	XOAResults.WSDL can be used to create the Web Service Listener. The WSDL is in the attached ZIP file.
	<See XOAresults.zip>

C# Receiver (PGIAsync .NET Project)
	PGIAsync.ZIP is a .NET project.

NOTE: Currently the Web Service will accept the GFPD PUSH and create a text file recording the XML Request and then a more readable format of the data. The location of the log file is defined by the Web.Config service1path value. Also, if you know your mail server parameters you can modify the SendMail function and they set the sendmail1 value in Web.Config to send mail to an address (emailaddress1 in web.config) whenever data is received.
	<See Pgiasync.zip>

JAVA Receiver

	Contains sample server and client and build scripts that show how to setup a and test a java receiver.
	<See java.zip>

Documents
	Document
	

	Data format of the data pushed (XML) to the clients webservice from the GFPD
	<see gfpd_formdata.pdf>

Sample Pushed XML

	SMS Response Sample
	<see SMS_Sample.xml in sampleXML.zip>

	DTMF Result (sample 1) NOTE: response values are base64 encoded
	<see DTMF_One.xml in sampleXML.zip>

	DTMF Result (sample 2)
	<see DTMF_Two.zml in sampleXML.zip>

